Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

نویسندگان

  • Julian C-H Chen
  • Clifford J Unkefer
چکیده

The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein structures by spallation neutron crystallography

The Protein Crystallography Station at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. This capability also includes the Macromolecular Neutron Crystallography (MNC) consortium between Los Alamos (LANL) and Lawrence Berkeley National Laboratories for developing computational too...

متن کامل

Neutron crystallography – Then and now *

Neutron crystallography began to be employed at the Bhabha Atomic Research Centre (BARC), Trombay, Mumbai in the early sixties. At that time, the technique, at BARC as well as elsewhere, was in a nascent state, with emphasis on building of instruments and development of crystallography software. Over the years, the Trombay group kept pace with the advancements in other parts of world and employ...

متن کامل

The X-ray Transform and its Application in Nano Crystallography

In this article a review on the definition of the X- ray transform and some ofits applications in Nano crystallography is presented. We shall show that the X- raytransform is a special case of the Radon transform on homogeneous spaces when thetopological group E(n)- the Euclidean group - acts on ℝ2 transitively. First someproperties of the Radon transform are investigated then the relationship ...

متن کامل

Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation ...

متن کامل

Small-angle scattering and its interplay with crystallography, contrast variation in SAXS and SANS.

Methods of contrast variation are tools that are essential in macromolecular structure research. Anomalous dispersion of X-ray diffraction is widely used in protein crystallography. Recent attempts to extend this method to native resonant labels like sulfur and phosphorus are promising. Substitution of hydrogen isotopes is central to biological applications of neutron scattering. Proton spin po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017